Multi-frequency high-field EPR study of iron centers in malarial pigments.
نویسندگان
چکیده
The multi-frequency high-field electron paramagnetic resonance (HFEPR) was used to study the magnetic properties of malarial pigment hemozoin and its synthetic analogue, beta-hematin. (FeIII-protoporphyrin-IX)2 dimers containing five-coordinate high-spin FeIII, S = 5/2, are the building blocks of these pigments. The fit of EPR spectra that were acquired in an unprecedented wide range of microwave frequencies of 34 and 94 GHz for hemozoin and 27-500 GHz for beta-hematin yielded a complete set of intrinsic spin Hamiltonian parameters: D = +5.85(1) cm-1, E = 0, g perpendicular = 1.95(1), g parallel = 2.00(1). These results point to the existence of largely axial symmetry of the iron environment in the bulk phase of hemozoin and beta-hematin.
منابع مشابه
A 236-Ghz Fe3+ EPR Study of Nanoparticles of the Ferromagnetic Room-Temperature Semiconductor Sn1-xFexO2 (x = 0.005)
High-frequency (236 GHz) electron paramagnetic resonance (EPR) studies of Fe ions at 255 K are reported in a Sn1-xFexO2 powder with x = 0.005, which is a ferromagnetic semiconductor at room temperature. The observed EPR spectrum can be simulated reasonably well as the overlap of spectra due to four magnetically inequivalent high-spin (HS) Fe ions (S = 5/2). The spectrum intensity is calculated,...
متن کاملMalarial Pigment (so-called Melanin): Its Nature and Mode of Production
1. Two important methods for the study of malarial pigment are described. (a) A method for obtaining a solution of malarial pigment from fixed tissues without the removal of a trace of hemoglobin from the red blood corpuscles. (b) A method for obtaining an iron reaction in malarial pigment. 2. By comparing the bleach reactions and solubility of melanins and malarial pigment, the dissimilarity o...
متن کاملFourier-transform EPR at high-field/high-frequency (3.4 T/95 GHz) using broadband stochastic microwave excitation.
Stochastic excitation with a full-width-half-maximum bandwidth of 250 MHz was used to perform Fourier-transform (FT) high-field/high-frequency electron paramagnetic resonance (EPR) at 3.4T/95 GHz (W-band). Thereby, the required microwave peak power is reduced by a factor of tau(p)/T1 as compared to equivalent pulsed FT EPR in which the spin system with spin-lattice relaxation time T1 is excited...
متن کاملDEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR.
This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron-electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we...
متن کاملEPR Study of Iron Ion Complexes in Human Blood
Electronic states of iron ion complexes in human blood from patients with melanoma have been investigated by electron paramagnetic resonance (EPR). The measurements were performed at liquid nitrogen temperature (77 K) on an X-band EPR spectrometer. Numerous types of iron paramagnetic centers have been identified. In several kinds of protein complexes exemplified by methemoglobin, transferrin or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 14 شماره
صفحات -
تاریخ انتشار 2006